
Tuning of a Matrix-Matrix Multiplication
Algorithm for Several GPUs Connected

by Fast Communication Links

Yea Rem Choi1(B) , Vsevolod Nikolskiy1,2 , and Vladimir Stegailov1,2,3

1 HSE University, Moscow, Russia
echoj@hse.ru

2 Joint Institute for High Temperatures of the RAS, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Abstract. The usage of one of the latest high-performance hardware
types (nodes with several GPUs connected by high bandwidth and low
latency communication links), requires algorithms where the CPU is used
only to manage the program execution, and GPUs are used for computa-
tions. In this work, we study an original GPU-only parallel matrix-matrix
multiplication algorithm (C = αA ∗ B + βC) for servers with multiple
GPUs. The algorithm is implemented using CUDA. The performance of
this multi-GPU GEMM algorithm and the method defining the optimal
tile size using the hardware parameters and the matrix size are consid-
ered. The usability of the developed performance model by benchmarking
two types of GPU servers is verified.

Keywords: Parallel computing · CUDA · GEMM · high-speed GPU
interconnect · multi-GPU programming

1 Introduction

Today, accelerators, especially GPUs, have arisen as an important component of
supercomputers. Therefore, many algorithms and programs have been modified
accordingly: molecular dynamics codes such as GROMACS [1], particle-in-cell
plasma simulation codes such as PICADOR [2], electronic structure calculation
codes such as Quantum Espresso [3,4], or astrophysical hydrodynamics codes such
as GPUPEGAS [5,6]. The main idea of these modifications is to offload some pos-
sible workload to be computed on GPUs. The strategy is to organize parallel com-
puting across the nodes of a supercomputer using MPI and inside the node with
GPUs using OpenCL/CUDA/HIP (see e.g. [7–9]). The common issue then is data
transfer bandwidth, which restricts the GPU utilization rate [10,11], hence, there
arises a need for very high-performance links such as NVlink or Infinity Fabric.
Servers with GPU devices connected with such links generally show high efficiency,
especially in the cases of GPU-only algorithms (e.g. [12–14]).

Many problems are based or rely on linear algebra, particularly, on matrix
operations. Matrix multiplication is a more or less costly operation that might be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Sokolinsky and M. Zymbler (Eds.): PCT 2022, CCIS 1618, pp. 158–171, 2022.
https://doi.org/10.1007/978-3-031-11623-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11623-0_12&domain=pdf
http://orcid.org/0000-0002-4594-6495
http://orcid.org/0000-0001-8648-9721
http://orcid.org/0000-0002-5349-3991
https://doi.org/10.1007/978-3-031-11623-0_12


Tuning of a Matrix-Matrix Multiplication Algorithm 159

appraised as a benchmark to study the performance of computers (e.g. [15–18]).
While GPUs are used for such computations, we can distinguish cases when
only GPUs are used for it or, otherwise, other types of computing units may
participate in it. On the other hand, contemporary compute nodes have fast links
(e.g. NVlink), such as those described earlier, between GPUs and slower links
(e.g. PCIe) between the CPU and GPU. Thence, if we have to compute several
consecutive mathematically heavy operations, it will be less costly to launch
it on GPUs without giving requests to the host memory for data transfer. In
addition, during multi-GPU computing, devices have to continuously send and
receive data, therefore, the reuse of data on the units involved, if possible, will
make the process faster and less complicated.

2 Related Work

Parallel matrix multiplication algorithms have a long history of development.
For example, after the introduction of the MPI standard, a Scalable Universal
Matrix Multiplication Algorithm (SUMMA) for parallel matrix multiplication
was published [19]. Different parallel GEMM algorithm models and structures
were under research [20,21]. There were attempts to redesign the core of the
algorithm [22]. One of the recent works showing approximate peak performance
is the Communication Optimal S-partition-based Matrix multiplication Algo-
rithm (COSMA) [23]. Particular attention there is paid to the importance of
I/O operations and communications management, which is the key to reach
comparably fast performance in relation to the best existing solutions such as
ScaLAPACK [23].

Analytical models help to find optimal parameters for GPU algorithms. Such
a model for a single GPU is presented in Tran, Lee, and Choi [24].

Since we work with multiple GPUs, we also have to pay attention to the
synchronization process between the devices [25].

The optimal partitioning of a computational domain over several hetero-
geneous processors, processor load balancing and the minimization of inter-
processor communication costs are crucial for data-parallel dense linear algebra
and other applications that have a similar communication pattern in modern
hybrid servers. One of the most recent works in this field is devoted to the opti-
mal partitioning of a square computational domain over three heterogeneous
processors [26].

An algorithm showing high efficiency for hybrid platforms that have fast com-
munication links installed between the CPU and GPU is built over the PaRSEC
runtime system [27]. It stores data in the host memory, and GPUs are supplied
with the necessary data chunks by the CPU-GPU interconnect.

In our previous work [28], we introduced a matrix multiplication algorithm
for a multi-GPU node that uses only GPUs for data storage and computation.
The algorithm is aimed for the use in nodes with a fast interconnect between
GPUs. It was shown that the standard cuBLAS-XT function from Nvidia CUDA
SDK provided suboptimal performance on a multi-GPU node. The asynchronous



160 Y. R. Choi et al.

data transfer and compute organization in the algorithm allowed us to get much
higher performance. In this work, we present an analytical model that estimates
the time-to-solution for the proposed algorithm using basic hardware parameters.
This analytical model can be used to optimize the algorithm verified in this work
by benchmarking two different multi-GPU servers.

3 Testing Platforms

The results reported in this study are obtained on the K-type nodes of the
cHARISMa supercomputer at HSE University [29,30]. The nodes are based on
DELL PowerEdge C4140 servers with two Intel Xeon Gold 6152 CPUs, and four
NVidia Tesla V100 GPUs (Fig. 1a). Each GPU has 32 GB of HBM2 memory,
and the four GPUs are connected by NVLINK 2.0, forming a fully connected
(‘all-to-all’) topology.

Fig. 1. Topology of the DELL PowerEdge C4140M node of the cHARISMa supercom-
puter with two CPUs and four Nvidia Tesla V100 GPUs connected by NVLINK 2.0 (a)
and the TYAN B8021G88V2HR-2T server with one CPU and four Nvidia GTX1070
GPUs connected by PCIe 3.0 (b).

The benchmarking studies presented in this work are carried out using the
standard HPC software stack based on CentOS Linux release 7.6.1810, GNU
compilers 7.3, and CUDA Version 10.2.89 with driver ver. 440.33.01.

The second platform is the TYAN B8021G88V2HR-2T server at JIHT RAS.
It has the EPYC 7351P CPU and four NVidia GeForce GTX1070 GPUs con-
nected by PCIe 3.0 (Fig. 1b). Each GPU has 8 GB of GDDR5 memory.

4 Parallel Matrix-Matrix Multiplication Algorithm
for Multiple GPUs

The studied algorithm is an improved version of the algorithm presented pre-
viously [28]. The research is based on the general matrix-matrix multiplication
algorithm for the following matrix operation

C = αA ∗ B + βC.



Tuning of a Matrix-Matrix Multiplication Algorithm 161

The main idea of the process is to calculate the tiles of the resulting matrix C
on each device with the reuse of possible data of the input matrix bands [28].
In the research, we observe a simpler case with 2 square matrices A and B,
where N ∗ N elements are in both. Each matrix is divided into some number
of equal-sized bands to share the computational load between different GPUs.
Then, from the pairs of the bands from A and B, we calculate the appropriate
tiles of the resulting matrix C.

The GEMM function from the cuBLAS library is used as the core of the
proposed algorithm. It normally works with column-oriented matrices, but is
also available for differently oriented matrices. In our case, if we perceive the
column orientation as a default configuration, we store the data of the matrix A
transposed. This simplifies the data transfer operation because we can just send
one long data line from the source memory.

The algorithm is GPU-oriented, thus, the CPU gives only instructions. The
source data are located in GPUs, and transfers are sent only between GPUs. For
computation in devices, 2 bands are allocated for the same matrix.

The classical SUMMA algorithm [19] is developed using MPI for distributed
memory systems. SUMMA does not use asynchronous data transfers, which
could help overlapping computations and communications. The algorithm pro-
posed here works with the “rows” of the matrix A and the “columns” of the
matrix B. However, GPUs perform computational operations reasonably quickly.
To supply data in time, high-speed communication links and data division into a
sufficiently large number of chunks are required. To manage this issue, we orga-
nize asynchronous communications and computations. Then, we do not supply
the original data of the matrix C, but we add βC due to the copy kernel of the
results received in the final stage.

5 Theoretical Optimal Tile Size

For a better performance of the algorithm, we regulate the tile size one by
one and find the best one. The performance time of the GEMM kernel can be
approximated [31] as

TGEMM = max (Tmem, Tmath, Tinstructions), (1)

where Tmem is the data management time in the frame of a device, Tmath is
the time spent on mathematical operations, and Tinstructions is the time during
which instructions are given by the CPU. In the basis of the algorithm, we
assume in advance that Tinstructions � Tmath since, otherwise, a multi-GPU
implementation would slow down the execution by waiting for instructions. To
satisfy this condition, the matrices involved in GEMM should not be too small.
To understand if Tmath > Tmem, we can find the arithmetic intensity [32] of



162 Y. R. Choi et al.

GEMM operations, which should be greater than the defined value for the devices
involved, i.e., the math and memory bandwidth proportion. In the case of single
precision (32-bit), it can be found by the proportion

Intensity =
FLOPS

bytes
=

2MNK

4(MN + NK + MK)
> BWmath/BWmem = kBW ,

(2)
where M,N,K are the numbers of elements in the columns or rows of the matri-
ces A,B,C; BW is the processor math or memory bandwidth, appropriately. In
our case, Eq. (2) becomes

Intensity =
N2

i N

2(NiN + NiN + N2
i )

=
NiN

4N + 2Ni
> kBW . (3)

After simple arithmetic we get (N > 2kBW )

Ni > 4kBWN/(N − 2kBW ), Tmath > Tmem. (4)

For example, for single precision of the Nvidia V100 GPU (kBW = 16.6) if
N = 212, Ni > 66.9 needed to Tmath > Tmem, if N = 213, then Ni > 66.6, if
N = 214, then Ni > 66.5. Each time can be found by the equations

Tmath = FLOPS/BWmath, Tmem = bytes/BWmem, (5)

which for the algorithm transform into

Tmath = 2N2
i N/BWmath, Tmem = (8NNi + 4N2

i )/BWmem. (6)

On the other hand, we have to keep data supply from memory storing original
matrices simultaneously. The GPU device, where the original matrix is located,
sends bands to the other GPUs, so NumGPUs − 1 data transfer operations need
be sent. If we are not dealing with a small number of tiles, the reuse of data in
the model can approximate the time needed for one kernel launch (Tkernel) as
follows:

Tkernel = max(TGEMM , (NumGPUs − 1)Ttransfer). (7)

Otherwise, the transfer time (Ttransfer) can increase by up to 3 times (3 matrices
A, B, C). This effect is conspicuously demonstrated when we store all matrices in
one device [28], where the transfer time influences the performance of the whole
task and has decreased efficiency compared to the case with the spread store of
the matrices.

Furthermore, if we suppose that we have reached a fully parallel model, then
the full task performance time (Ttask) will be approximately

Ttask = 3Ttransfer + N/(NiNumGPUs)Tkernel. (8)

Particularly, the data transfer time has a linear form [33]

Ttransfer = bytes/BWtransfer + Tlatency. (9)



Tuning of a Matrix-Matrix Multiplication Algorithm 163

We work with sufficiently large matrices such that the term with transfer band-
width between GPUs (BWtransfer) dominates [33]

bytes/BWtransfer � Tlatency. (10)

Accordingly, expression (9) together with condition (10) in single precision can
be converted into

Ttransfer = 4NiN/BWtransfer. (11)

Today, high-performance computing environments have exceptionally fast
math bandwidth (BWmath) or in-device memory bandwidth (BWmem) compar-
ing with data transfer (BWtransfer) from another device. It means that we will
slow down the execution of the task whenever we make GPUs wait for data sup-
ply. There are two possible situations, if Intensity > kBW , we determine from
Eqs. (1), (6), (7), (11)

Tkernel = TGEMM = Tmath, Ni > 2(NumGPUs −1)BWmath/BWtransfer, (12)

and if Intensity < kBW ,

Tkernel = Tmem, Ni > N ((NumGPUs − 1)BWmem/BWtransfer − 2) . (13)

Interesting remarks can be made here from conditions (12) and (13). If for some
reason we have BWtransfer � BWmath or mem, we will also have Tkernel =
TGEMM since Ni should be a natural number; but, probably, some reversed sit-
uation can be exposed for small Ni and will have a comparably fast BWtransfer.

We also minimize the performance time in Eq. (8) by regulating Ni. With
(6), (11), (12), (13), we determine for Intensity > kBW

Ttask(Ni) = (3N/BWtransfer + 2N2/(NumGPUsBWmath))Ni, (14)

otherwise

Ttask(Ni) = (3N/BWtransfer + 4N/(NumGPUsBWmem))Ni

+ 8N2/(NumGPUsBWmem). (15)

Expressions (14) and (15) show that the performance will be better for lower
Ni. However, we still have to satisfy three conditions (12), (13), and (4) at once.

6 Tile Size Tuning for Different Platforms

To come up with the required tile size using the materials presented in Sect. 5,
we have to pay attention to arithmetical intensity (4) and conditions (12) or (13).
Importantly, we see that if the algorithm is math limited (Intensity > kBW ),
then Ni is independent from N . In the work frame, we observe only matrices
with N ≥ 8192, and both N and Ni being some natural number power of 2.



164 Y. R. Choi et al.

6.1 Expected tile Size for Experimental Environments

The first computing system is composed by Nvidia V100 GPUs connected by
NVLink 2.0. The V100 GPU single precision parameters are presented in Table 1.
To find Ni, we use the maximal expected BWmath or mem, but for the transfer
one, the rate is found by the bandwidth test. We have from (4) at least Ni > 66
to have a mathematical limited condition and from (12) Ni > 616 for 2 GPUs
and Ni > 1849 for 4 GPUs. Thus, the optimal sizes are Ni = 1024 for 2 GPUs
and Ni = 2048 for 4 GPUs.

The second system is Nvidia GeForce GTX 1070 GPUs connected by PCIe 3.0
(see Table 1). From the intensity condition we get Ni > 90, from (12) Ni > 1352
for 2 GPUs and Ni > 4058 for 4 GPUs. Thus, the optimal sizes are Ni = 2048
for 2 GPUs and Ni = 4096 for 4 GPUs.

Table 1. Test platform parameters and best predicted tile sizes

Hardware Parameters Nvidia V100 Nvidia GTX1070

BWmath (Gflops/sec) 14899 5783

BWmem (Gb/sec) 900 256

test BWtransfer (Gb/sec) 48.33 8.55

ideal BWtransfer (Gb/sec) 50 16

Algorithm Parameters Nvidia V100 Nvidia GTX1070

Ni for 2 GPUs 1024 2048

Ni for 4 GPUs 2048 4096

6.2 Experimental Results

In this section, we would like to present the performance time and tile size
dependence. For each test platform, we observed 2 cases of data store, when all
square matrices with N2 elements are located in the memory of one GPU, or the
matrices A, B, C are located in 3 GPUs, one in each. We increased the testing
data by 2, thus, N and Ni have the value being some power of 2. In addition, the
size ranges are N ≥ 8192 and Ni ≥ 512. The matrix size is chosen consciously
large to avoid the influence of minor parameters such as Tinstructions (Eq. (1)),
and the tile size to show the behavior when it goes over the appointed value
in Table 1. If we do not meet extra conditions to the tile size, the largest one
we can deal with is Ni = N/NumGPUs due to equal task division between the
implemented GPUs.

Each server we tested has 4 GPUs, which we could use when launching the
program. For each, we analyzed the cases with 2 or 4 GPUs. In addition, we
wanted to present some testing profiles to describe how GPU performance relates
to the tile size (Ni). While working with CUDA, we got profiles using nvprof and
visualized them by the Nvidia Visual Profiler. In Fig. 2, we can see the involved
processor in the column on the left side and the type of operation described, such
as instructions given on the CPU, data transfer, or kernel (GEMM) execution.



Tuning of a Matrix-Matrix Multiplication Algorithm 165

Fig. 2. Profile parts of the multi-GPU GEMM operation on V100 with the proposed
algorithm performing on 4 GPUs. Number of elements (N = 65536) in a row (column)
of matrices and different tile sizes (Ni = 4096 (a), Ni = 2048 (b), Ni = 1024 (c)). The
matrices A, B, and C are stored in devices with id 0, 1, and 2.

Four V100 Connected by NVLink. The GPUs we worked with have 32
GB of in-device memory. For our experiments, the maximum matrices with
N = 32768 fit in one device memory together and with N = 65536 separately.
However, in the second case, we met the memory limit for allocating additional
band matrices involved in the computing process, thus, the maximum tile size
we could use was Ni = 4096. In Fig. 3, we can find the best performance with
Ni = 1024 for 2 GPUs and Ni = 2048 for 4 GPUs. These numbers match with
those defined in Sect. 6.1.



166 Y. R. Choi et al.

Fig. 3. Graph of the multi-GPU GEMM operation on V100 with the proposed algo-
rithm performance speed on 2 and 4 GPUs by tile size (Ni) for a different number
of elements (N) in a row (column) of matrices. The matrices A, B, and C are stored
in device 0 (a) or in devices 0, 1, 2 (b), respectively. The dashed lines show the total
single precision peak performance of 2 and 4 GPUs, respectively.

Figure 2 for N = 65536 demonstrates the execution of 4 Volta 100 GPUs
for different tile sizes (Ni). When using the appointed size Ni (see Fig. 2b), we
achieve the most frequent data transfer (for example, comparing with Fig. 2a),
not taking longer than the kernel time (see Fig. 2c). This matches with the
propositions given in Sect. 5. Therefore, the benchmark results verify the model.

Four GTX1070 Connected by PCIe 3.0. This testing platform has 8 GB
of local memory in each GPU. We could perform benchmarks up to N = 16384
for a single device located case and N = 32768 and up to Ni = 4096 for a
distributed storage case. The results are presented in Fig. 4.

The best performance with 2 GPUs is achieved with Ni = 2048 as proposed
(Fig. 4a). For 4 GPUs, we have a lack of data due to the memory limit, however,
the performance keeps growing to Ni = 4096, so we can expect it to be the
best. Hence, the found tile size according to the arithmetical model matches for
2 GPUs, and, however, the tile size for 4 GPUs is shown to be the best only on
one point due to the memory limit; the behavior of the graphs matches with the
propositions given beforehand, that is why we can assume that the results fully
comply with the mathematical algorithm.



Tuning of a Matrix-Matrix Multiplication Algorithm 167

Fig. 4. Graph of the multi-GPU GEMM operation on GeForce GTX1070 with the
proposed algorithm performance speed on 2 (a) and 4 GPUs (b,c) by tile size (Ni) for
a different number of elements (N) in a row (column) of matrices. The matrices A, B,
and C are stored in device 0 (a,b) or in devices 0, 1, 2 (c), respectively. The dashed
lines show the total single precision peak performance of 2 and 4 GPUs, respectively.

7 Discussion

The performance of the proposed multi-GPU general matrix multiplication algo-
rithm is dependent on the size of tile matrices. We determined tile size values
for definite device and communication link properties, as well as the number
of GPUs involved, to achieve the best performance in the tests. Then we per-
formed experiments with large matrices to reach the performance limited by the
computing ability of the GPU.

In the most general case, the computation of GEMM functions on a GPU
can be limited by computational performance or memory bandwidth, depending
on the matrix size. However, in our work, we observe only a computationally



168 Y. R. Choi et al.

limited case. There are secondary, but still important conditions that affect the
performance. The first is the initialization latency of kernels on the GPU called
by the CPU, and the consumed time for it should be much less than the time of
the actual workload. The second is the data transfer time, which should be less
than the computing time to keep the continuous operation of multiple devices.

We propose a mathematical model to define the optimal tile size based on
known hardware parameters. The model is based on some assumptions about
the system. In particular, the system should include similar GPUs connected by
links with the same and fairly stable throughput values. In practice, determining
the real properties of communication networks may be a non-trivial task, in
particular, the behavior of these links under a certain load may require additional
tests and profiling.

The proposed algorithm with a high degree of probability will not be optimal
for exotic and specific cases (see e.g. [34]). In this paper, more typical and com-
mon cases are considered. Further development of the algorithm may include
increased flexibility and versatility to work effectively on a wide range of config-
urations.

8 Conclusion

An analytical model that takes into account the hardware parameters of the GPU
server (data transfer bandwidth and GPU performance) and predicts the optimal
tile size for the multi-GPU GEMM algorithm is developed. The benchmarks
on two different GPU servers (one with V100 GPUs and NVlink and another
with GTX1070 GPUs and PCIe links) confirm the applicability of the analytical
model. The profiling of the algorithm execution on the GPU server with NVlink
also verifies the model .

Acknowledgment. The article was prepared within the HSE University Basic
Research Program. The research was partially supported by the resources of the super-
computer facilities provided by NRU HSE.

References

1. Abraham, M.J., et al.: GROMACS: high performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2,
19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

2. Bastrakov, S., et al.: Particle-in-cell plasma simulation on heterogeneous cluster
systems. J. Comput. Sci. 3(6), 474–479 (2012). https://doi.org/10.1016/j.jocs.2012.
08.012

3. Romero, J., Phillips, E., Ruetsch, G., Fatica, M., Spiga, F., Giannozzi, P.: A per-
formance study of quantum ESPRESSO’s PWscf code on multi-core and GPU sys-
tems. In: Jarvis, S., Wright, S., Hammond, S. (eds.) PMBS 2017. LNCS, vol. 10724,
pp. 67–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72971-8 4

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.jocs.2012.08.012
https://doi.org/10.1016/j.jocs.2012.08.012
https://doi.org/10.1007/978-3-319-72971-8_4


Tuning of a Matrix-Matrix Multiplication Algorithm 169

4. Spiga, F., Girotto, I.: phiGEMM: a CPU-GPU library for porting Quantum
ESPRESSO on hybrid systems. In: 2012 20th Euromicro International Confer-
ence on Parallel, Distributed and Network-based Processing, pp. 368–375 (2012).
https://doi.org/10.1109/PDP.2012.72

5. Akimova, E., Misilov, V., Kulikov, I., Chernykh, I.: Hydrodynamical simulation
of astrophysical flows: high-performance GPU implementation. J. Phys. Conf. Ser.
1336, 012014 (2019). https://doi.org/10.1088/1742-6596/1336/1/012014/meta

6. Kulikov, I.: GPUPEGAS: a new GPU-accelerated hydrodynamic code for numeri-
cal simulations of interacting galaxies. Astrophys. J. Suppl. Ser. 214(1), 12 (2014).
https://doi.org/10.1088/0067-0049/214/1/12

7. Nikolskiy, V.P., Stegailov, V.V.: GPU acceleration of four-site water models in
LAMMPS. In: Advances in Parallel Computing, vol. 36: Parallel Computing: Tech-
nology Trends, Proceedings of PARCO-2019, pp. 565–573 (2019). https://doi.org/
10.3233/APC200086

8. Stegailov, V., et al.: Angara interconnect makes GPU-based Desmos supercom-
puter an efficient tool for molecular dynamics calculations. Int. J. High Perform.
Comput. Appl. 33(3), 507–521 (2019). https://doi.org/10.1177/1094342019826667

9. Kondratyuk, N., Nikolskiy, V., Pavlov, D., Stegailov, V.: GPU-accelerated molec-
ular dynamics: State-of-art software performance and porting from Nvidia CUDA
to AMD HIP. Int. J. High Perform. Comput. Appl. 35(4), 312–324 (2021). https://
doi.org/10.1177/10943420211008288

10. Smirnov, G.S., Stegailov, V.V.: Efficiency of classical molecular dynamics algo-
rithms on supercomputers. Math. Models Comput. Simul. 8(6), 734–743 (2016).
https://doi.org/10.1134/S2070048216060156

11. Morozov, I., Kazennov, A., Bystryi, R., Norman, G., Pisarev, V., Stegailov, V.:
Molecular dynamics simulations of the relaxation processes in the condensed mat-
ter on GPUs. Comput. Phys. Commun. 182(9), 1974–1978 (2011). https://doi.
org/10.1016/j.cpc.2010.12.026

12. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynam-
ics simulations fully implemented on graphics processing units. J. Comput. Phys.
227(10), 5342–5359 (2008). https://doi.org/10.1016/j.jcp.2008.01.047

13. Luehr, N., Ufimtsev, I.S., Mart́ınez, T.J.: Dynamic precision for electron repul-
sion integral evaluation on graphical processing units (GPUs). J. Chem. Theory
Comput. 7(4), 949–954 (2011). https://doi.org/10.1021/ct100701w

14. Rojek, K., Wyrzykowski, R., Kuczynski, L.: Systematic adaptation of stencil-
based 3D MPDATA to GPU architectures. Concurr. Comput. 29(9), e3970 (2017).
https://doi.org/10.1002/cpe.3970

15. Dongarra, J., Pineau, J.F., Robert, Y., Vivien, F.: Matrix product on hetero-
geneous master-worker platforms. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 53–62 (2008).
https://doi.org/10.1145/1345206.1345217

16. DeFlumere, A., Lastovetsky, A.: Searching for the optimal data partitioning shape
for parallel matrix matrix multiplication on 3 heterogeneous processors. In: 2014
IEEE International Parallel & Distributed Processing Symposium Workshops, pp.
17–28. IEEE (2014). https://doi.org/10.1109/IPDPSW.2014.8

17. Rohr, D., Lindenstruth, V.: A flexible and portable large-scale DGEMM library for
Linpack on next-generation multi-GPU systems. In: 2015 23rd Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing, pp.
664–668. IEEE (2015). https://doi.org/10.1109/PDP.2015.89

https://doi.org/10.1109/PDP.2012.72
https://doi.org/10.1088/1742-6596/1336/1/012014/meta
https://doi.org/10.1088/0067-0049/214/1/12
https://doi.org/10.3233/APC200086
https://doi.org/10.3233/APC200086
https://doi.org/10.1177/1094342019826667
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1134/S2070048216060156
https://doi.org/10.1016/j.cpc.2010.12.026
https://doi.org/10.1016/j.cpc.2010.12.026
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1021/ct100701w
https://doi.org/10.1002/cpe.3970
https://doi.org/10.1145/1345206.1345217
https://doi.org/10.1109/IPDPSW.2014.8
https://doi.org/10.1109/PDP.2015.89


170 Y. R. Choi et al.

18. Ryu, S., Kim, D.: Parallel huge matrix multiplication on a cluster with GPGPU
accelerators. In: 2018 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 877–882. IEEE (2018). https://doi.org/10.
1109/IPDPSW.2018.00139

19. Van De Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurr. Pract. Exp. 9(4), 255–274 (1997). https://doi.org/10.1002/
(SICI)1096-9128(199704)9:4〈255::AID-CPE250〉3.0.CO;2-2

20. Goto, K., Geijn, R.A.v.d.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 12–1 - 12–25 (2008). https://doi.org/10.1145/
1356052.1356053

21. Kwasniewski, G., Kabić, M., Besta, M., VandeVondele, J., Solcà, R., Hoefler, T.:
Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplication.
In: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2019, pp. 24–1- -24–22. Association
for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3295500.3356181

22. Lai, P.W., Arafat, H., Elango, V., Sadayappan, P.: Accelerating Strassen-
Winograd’s matrix multiplication algorithm on GPUs. In: 20th Annual Interna-
tional Conference on High Performance Computing, pp. 139–148. IEEE (2013),
https://doi.org/10.1109/HiPC.2013.6799109

23. Kwasniewski, G., Kabić, M., Besta, M., VandeVondele, J., Solcà, R., Hoefler, T.:
Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplication.
In: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1–22 (2019). https://doi.org/10.1145/
3295500.3356181

24. Tran, N.P., Lee, M., Choi, J.: Parameter based tuning model for optimizing per-
formance on GPU. Cluster Comput. 20(3), 2133–2142 (2017). https://doi.org/10.
1007/s10586-017-1003-4

25. Zhang, L., Wahib, M., Zhang, H., Matsuoka, S.: A study of single and multi-device
synchronization methods in Nvidia GPUs. In: 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 483–493. IEEE (2020). https://
doi.org/10.1109/IPDPS47924.2020.00057

26. Malik, T., Lastovetsky, A.: Towards optimal matrix partitioning for data parallel
computing on a hybrid heterogeneous server. IEEE Access 9, 17229–17244 (2021).
https://doi.org/10.1109/ACCESS.2021.3052976

27. Herault, T., Robert, Y., Bosilca, G., Dongarra, J.: Generic matrix multiplica-
tion for multi-GPU accelerated distributed-memory platforms over parsec. In:
2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA), pp. 33–41. IEEE (2019). https://doi.org/10.1109/
ScalA49573.2019.00010

28. Choi, Y.R., Nikolskiy, V., Stegailov, V.: Matrix-matrix multiplication using mul-
tiple GPUs connected by Nvlink. In: 2020 Global Smart Industry Conference
(GloSIC), pp. 354–361. IEEE (2020). https://doi.org/10.1109/GloSIC50886.2020.
9267865

29. Kondratyuk, N., et al.: Performance and scalability of materials science and
machine learning codes on the state-of-art hybrid supercomputer architecture. In:
Voevodin, V., Sobolev, S. (eds.) Communications in Computer and Information
Science. Supercomputing, pp. 597–609. Springer, Cham (2019), https://doi.org/
10.1007/978-3-030-36592-9 49

https://doi.org/10.1109/IPDPSW.2018.00139
https://doi.org/10.1109/IPDPSW.2018.00139
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1109/HiPC.2013.6799109
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1007/s10586-017-1003-4
https://doi.org/10.1007/s10586-017-1003-4
https://doi.org/10.1109/IPDPS47924.2020.00057
https://doi.org/10.1109/IPDPS47924.2020.00057
https://doi.org/10.1109/ACCESS.2021.3052976
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/GloSIC50886.2020.9267865
https://doi.org/10.1109/GloSIC50886.2020.9267865
https://doi.org/10.1007/978-3-030-36592-9_49
https://doi.org/10.1007/978-3-030-36592-9_49


Tuning of a Matrix-Matrix Multiplication Algorithm 171

30. Kostenetskiy, P.S., Chulkevich, R.A., Kozyrev, V.I.: HPC resources of the higher
school of economics. J. Phys. Conf. Ser. 1740, 012050 (2021). https://doi.org/10.
1088/1742-6596/1740/1/012050

31. Kelefouras, V., Kritikakou, A., Mporas, I., Kolonias, V.: A high-performance
matrix-matrix multiplication methodology for CPU and GPU architectures. J.
Supercomput. 72(3), 804–844 (2016). https://doi.org/10.1007/s11227-015-1613-
7

32. Li, X., Liang, Y., Yan, S., Jia, L., Li, Y.: A coordinated tiling and batching frame-
work for efficient GEMM on GPUs. In: Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, pp. 229–241 (2019). https://doi.
org/10.1145/3293883.3295734

33. Boyer, M., Meng, J., Kumaran, K.: Improving GPU performance prediction with
data transfer modeling. In: 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and PhD Forum, pp. 1097–1106. IEEE (2013).
https://doi.org/10.1109/IPDPSW.2013.236

34. Tang, H., Komatsu, K., Sato, M., Kobayashi, H.: Efficient mixed-precision tall-
and-skinny matrix-matrix multiplication for GPUs. Int. J. Netw. Comput. 11(2),
267–282 (2021). https://doi.org/10.15803/ijnc.11.2 267

https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1007/s11227-015-1613-7
https://doi.org/10.1007/s11227-015-1613-7
https://doi.org/10.1145/3293883.3295734
https://doi.org/10.1145/3293883.3295734
https://doi.org/10.1109/IPDPSW.2013.236
https://doi.org/10.15803/ijnc.11.2_267

	978-3-031-11623-0
	 Preface
	 Organization
	 Contents
	High Performance Architectures, Tools and Technologies
	VGL Rating: A Novel Benchmarking Suite for Modern Supercomputing Architectures
	1 Introduction
	2 Related Work
	3 Proposed Benchmarking Method
	3.1 Selecting Graph Algorithms
	3.2 Selecting Input Graphs
	3.3 Principles Used to Form the Rating

	4 Using VGL as a Benchmarking Core
	5 Developed Benchmarking System
	6 Using the Developed Benchmarking System to Rank Modern Supercomputing Platforms
	7 Conclusion
	References

	HPC TaskMaster – Task Efficiency Monitoring System for the Supercomputer Center
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Detecting Inefficient Tasks
	4.1 Collected Data
	4.2 Data Processing
	4.3 Inferences
	4.4 Example

	5 User Statistics
	6 Conclusions
	References

	Constructing an Expert System for Solving Astrophysical Problems Based on the Ontological Approach
	1 Introduction
	2 Scheme Construction and Rules Formalization for Solving Compute-Intensive Astrophysics Problems
	3 Using Inference Rules for Intelligent Support
	4 Codes and Computational Experiments
	5 Conclusion
	References

	HPC Resources of South Ural State University
	1 Introduction
	2 High Performance Resources
	2.1 ``Tornado SUSU'' Supercomputer
	2.2 ``Neurocomputer'' Complex

	3 System Software
	3.1 Monitoring Systems
	3.2 Control Systems

	4 Application Software
	5 Conclusions
	References

	Parallel Numerical Algorithms
	Comparative Analysis of Parallel Methods for Solving SLAEs in Three-Dimensional Initial-Boundary Value Problems
	1 Introduction
	2 Continuous and Discrete Problem Setting
	3 Methods for Solving SLAEs in Implicit Schemes
	3.1 Choice of an Initial Approximation for Solving a SLAE
	3.2 Iterative Algorithms for Implicit Schemes
	3.3 Some Questions of Generalization of the Considered Approaches and Speed-up of Computations

	4 Examples of Numerical Experiments
	5 Conclusion
	References

	Optimization of the Computational Process for Solving Grid Equations on a Heterogeneous Computing System
	1 Introduction
	2 Method for Solving Grid Equations
	3 Software Implementation of the Method for Solving Grid Equations
	4 Conclusions
	References

	Parallel Methods for Solving Saddle Type Systems
	1 Introduction
	2 Iterative Algorithms in the Krylov Subspaces for Solving Saddle SLAEs
	2.1 General Scheme of the Krylov Approaches for Symmetric and Non-symmetric Algebraic Systems
	2.2 Generalized G-K-A – Bidiagonalization Method

	3 Scalable Parallelization of Iterative Methods
	4 Conclusion
	References

	Compact LRnLA Algorithms for Flux-Based Numerical Schemes
	1 Introduction
	2 Compact Streaming for Flux-Based Schemes
	2.1 Problem Statement
	2.2 Requirements for Compactness
	2.3 Compact Update

	3 Implementation with LRnLA Algorithms
	3.1 LRnLA Algorithm ConeTorre
	3.2 FArSh Data Structure
	3.3 Sample Implementation in CUDA
	3.4 Performance and Data Sizes
	3.5 Performance Benchmarks

	4 Results and Discussion
	References

	Analysis of Block Stokes-Algebraic Multigrid Preconditioners on GPU Implementations
	1 Introduction
	2 Problem Formulation
	2.1 Discretization and Formulation of Preconditioners
	2.2 Discretization and Considered Problems

	3 AMGCL Framework Modifications
	4 Numerical Results
	4.1 Unit Cube Problem
	4.2 Stokes Lid Driven Cavity
	4.3 Flow in a Channel with Obstacles
	4.4 Flow in a Porous Medium

	5 Conclusion
	References

	Implementation of the Algebraic Multigrid Solver Designed for Graphics Processing Units Based on the AMGCL Framework
	1 Introduction
	2 Aggregation AMG on the GPU
	3 Implementation
	4 Numerical Experiments
	5 Conclusion
	References

	Measuring the Effectiveness of SAT-Based Guess-and-Determine Attacks in Algebraic Cryptanalysis
	1 Introduction
	2 Preliminaries
	3 Using Tree-Like Metrics to Estimate the Effectiveness of SAT-Based Guess-and-Determine Attacks
	4 Class of Considered Functions
	5 Computational Experiments
	5.1 General Scenario
	5.2 Implementation and Results

	6 Conclusion
	References

	Tuning of a Matrix-Matrix Multiplication Algorithm for Several GPUs Connected by Fast Communication Links
	1 Introduction
	2 Related Work
	3 Testing Platforms
	4 Parallel Matrix-Matrix Multiplication Algorithm for Multiple GPUs
	5 Theoretical Optimal Tile Size
	6 Tile Size Tuning for Different Platforms
	6.1 Expected tile Size for Experimental Environments
	6.2 Experimental Results

	7 Discussion
	8 Conclusion
	References

	Visualizing Multidimensional Linear Programming Problems
	1 Introduction
	2 Mathematical Model of the LP Visual Representation
	3 Parallel Algorithm for Building an LP Problem Image
	4 Computational Experiments
	5 Conclusion
	References

	Supercomputer Simulation
	Quantum-Chemical Calculations of the Enthalpy of Formation of Some Tetrazine Derivatives
	1 Introduction
	2 Calculation Method
	3 Results and Discussion
	3.1 Enthalpy of Formation
	3.2 IR Spectra and Frequency Analysis

	4 Computational Details
	5 Conclusions
	References

	A New Approach to the Supercomputer Simulation of Carbon Burning Sub-grid Physics in Ia Type Supernovae Explosion
	1 Introduction
	2 Numerical Model
	2.1 Hydrodynamic Equations
	2.2 Stellar Equation of State
	2.3 Initial Profile
	2.4 Carbon Burning

	3 Parallel & Distributed Code
	3.1 Turbulence Model of Carbon Burning
	3.2 Nested Grid
	3.3 Performance

	4 Numerical Simulation of SNeIa Explosion
	4.1 Turbulence Carbon Burning
	4.2 Hydrodynamics of SNeIa Explosion

	5 Discussion
	6 Conclusions
	References

	Parallel Simulations of Dynamic Interaction Between Train Pantographs and an Overhead Catenary Line
	1 Introduction
	2 Mathematical Models
	2.1 Catenary Line Model
	2.2 Non-linear Static Analysis
	2.3 Dynamic Analysis
	2.4 Pantograph Model. Contact Interaction Between Pantographs and the Contact Wire

	3 Model Problems Setup
	3.1 Problems 1,2: Free Oscillations Excited Statically and Dynamically (by Impact Interaction)
	3.2 Problem 3: Oscillations Driven by a Constant Push Force Moving Along the Span

	4 Numerical Time-Integration Methods
	5 Software Implementation
	6 Results
	6.1 Model Problems: Free Oscillations
	6.2 Model Problem: Driven Oscillations
	6.3 Validation of the Model Against the Etalon Problem from EN 50318:2018

	7 OpenMP Parallelization and Code Performance
	8 Conclusions
	References

	Construction of a Parallel Algorithm for the Numerical Modeling of Coke Sediments Burning from the Spherical Catalyst Grain
	1 Introduction
	2 Mathematical Model of Coke Burning
	3 Constructing a Parallel Algorithm and Efficiency
	4 Results of a Computational Experiment
	5 Conclusion
	References

	MPI-Based PFEM-2 Method Solver for Convection-Dominated CFD Problems
	1 Introduction
	2 PFEM-2 Method
	2.1 Main Concepts and Solution Algorithm
	2.2 FEM Solution on the Eulerian Mesh
	2.3 Operations with Lagrangian Particles

	3 Parallel Software Implementation of PFEM-2
	3.1 Parallel Version of the FEM Solution in PFEM-2
	3.2 Parallel Version of Operations with Particles in PFEM-2

	4 Numerical Experiment
	4.1 Test Problem

	5 Conclusion
	References

	Modeling of Two-Phase Fluid Flow Processes in a Fractured-Porous Type Reservoir Using Parallel Computations
	1 Introduction
	2 Formulation of the Problem
	3 Parallel Implementation
	4 Calculation Results
	5 Conclusion
	References

	Kinetic Modeling of Isobutane Alkylation with Mixed C4 Olefins and Sulfuric Acid as a Catalyst Using the Asynchronous Global Optimization Algorithm
	1 Introduction
	2 Problem Statement
	3 Parallel Algorithm for Solving Global Optimization Problems
	3.1 Global Optimization Problem
	3.2 Parallel Asynchronous Global Search Algorithm

	4 Numerical Experiments
	4.1 Search for Activation Energies and Pre-exponential Multipliers of the Reaction
	4.2 Searching for Rate Constants Separately for Each Temperature

	5 Conclusions and Future Work
	References

	Simulation of Nonstationary Thermal Fields in Permafrost Using Multicore Processors
	1 Introduction
	2 Problem Statement and Mathematical Model
	3 Numerical Method
	4 Parallel Implementation and Numerical Experiments
	5 Conclusion
	References

	High-Performance Calculations for Modeling the Propagation of Allergenic Plant Pollen in an Atmospheric Boundary Layer
	1 Introduction
	2 Medical Aspects for the Problem of the Propagation of Allergenic Plant Pollen
	3 Analysis of the Methods of Propagating Allergenic Plant Pollen
	4 Mathematical Model and Its Computer Implementation of the Problem
	5 Results of Modeling
	6 Conclusion
	References

	Author Index




