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Abstract. The usage of one of the latest high-performance hardware
types (nodes with several GPUs connected by high bandwidth and low
latency communication links), requires algorithms where the CPU is used
only to manage the program execution, and GPUs are used for computa-
tions. In this work, we study an original GPU-only parallel matrix-matrix
multiplication algorithm (C = αA ∗ B + βC) for servers with multiple
GPUs. The algorithm is implemented using CUDA. The performance of
this multi-GPU GEMM algorithm and the method defining the optimal
tile size using the hardware parameters and the matrix size are consid-
ered. The usability of the developed performance model by benchmarking
two types of GPU servers is verified.

Keywords: Parallel computing · CUDA · GEMM · high-speed GPU
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1 Introduction

Today, accelerators, especially GPUs, have arisen as an important component of
supercomputers. Therefore, many algorithms and programs have been modified
accordingly: molecular dynamics codes such as GROMACS [1], particle-in-cell
plasma simulation codes such as PICADOR [2], electronic structure calculation
codes such as Quantum Espresso [3,4], or astrophysical hydrodynamics codes such
as GPUPEGAS [5,6]. The main idea of these modifications is to offload some pos-
sible workload to be computed on GPUs. The strategy is to organize parallel com-
puting across the nodes of a supercomputer using MPI and inside the node with
GPUs using OpenCL/CUDA/HIP (see e.g. [7–9]). The common issue then is data
transfer bandwidth, which restricts the GPU utilization rate [10,11], hence, there
arises a need for very high-performance links such as NVlink or Infinity Fabric.
Servers with GPU devices connected with such links generally show high efficiency,
especially in the cases of GPU-only algorithms (e.g. [12–14]).

Many problems are based or rely on linear algebra, particularly, on matrix
operations. Matrix multiplication is a more or less costly operation that might be
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appraised as a benchmark to study the performance of computers (e.g. [15–18]).
While GPUs are used for such computations, we can distinguish cases when
only GPUs are used for it or, otherwise, other types of computing units may
participate in it. On the other hand, contemporary compute nodes have fast links
(e.g. NVlink), such as those described earlier, between GPUs and slower links
(e.g. PCIe) between the CPU and GPU. Thence, if we have to compute several
consecutive mathematically heavy operations, it will be less costly to launch
it on GPUs without giving requests to the host memory for data transfer. In
addition, during multi-GPU computing, devices have to continuously send and
receive data, therefore, the reuse of data on the units involved, if possible, will
make the process faster and less complicated.

2 Related Work

Parallel matrix multiplication algorithms have a long history of development.
For example, after the introduction of the MPI standard, a Scalable Universal
Matrix Multiplication Algorithm (SUMMA) for parallel matrix multiplication
was published [19]. Different parallel GEMM algorithm models and structures
were under research [20,21]. There were attempts to redesign the core of the
algorithm [22]. One of the recent works showing approximate peak performance
is the Communication Optimal S-partition-based Matrix multiplication Algo-
rithm (COSMA) [23]. Particular attention there is paid to the importance of
I/O operations and communications management, which is the key to reach
comparably fast performance in relation to the best existing solutions such as
ScaLAPACK [23].

Analytical models help to find optimal parameters for GPU algorithms. Such
a model for a single GPU is presented in Tran, Lee, and Choi [24].

Since we work with multiple GPUs, we also have to pay attention to the
synchronization process between the devices [25].

The optimal partitioning of a computational domain over several hetero-
geneous processors, processor load balancing and the minimization of inter-
processor communication costs are crucial for data-parallel dense linear algebra
and other applications that have a similar communication pattern in modern
hybrid servers. One of the most recent works in this field is devoted to the opti-
mal partitioning of a square computational domain over three heterogeneous
processors [26].

An algorithm showing high efficiency for hybrid platforms that have fast com-
munication links installed between the CPU and GPU is built over the PaRSEC
runtime system [27]. It stores data in the host memory, and GPUs are supplied
with the necessary data chunks by the CPU-GPU interconnect.

In our previous work [28], we introduced a matrix multiplication algorithm
for a multi-GPU node that uses only GPUs for data storage and computation.
The algorithm is aimed for the use in nodes with a fast interconnect between
GPUs. It was shown that the standard cuBLAS-XT function from Nvidia CUDA
SDK provided suboptimal performance on a multi-GPU node. The asynchronous
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data transfer and compute organization in the algorithm allowed us to get much
higher performance. In this work, we present an analytical model that estimates
the time-to-solution for the proposed algorithm using basic hardware parameters.
This analytical model can be used to optimize the algorithm verified in this work
by benchmarking two different multi-GPU servers.

3 Testing Platforms

The results reported in this study are obtained on the K-type nodes of the
cHARISMa supercomputer at HSE University [29,30]. The nodes are based on
DELL PowerEdge C4140 servers with two Intel Xeon Gold 6152 CPUs, and four
NVidia Tesla V100 GPUs (Fig. 1a). Each GPU has 32 GB of HBM2 memory,
and the four GPUs are connected by NVLINK 2.0, forming a fully connected
(‘all-to-all’) topology.

Fig. 1. Topology of the DELL PowerEdge C4140M node of the cHARISMa supercom-
puter with two CPUs and four Nvidia Tesla V100 GPUs connected by NVLINK 2.0 (a)
and the TYAN B8021G88V2HR-2T server with one CPU and four Nvidia GTX1070
GPUs connected by PCIe 3.0 (b).

The benchmarking studies presented in this work are carried out using the
standard HPC software stack based on CentOS Linux release 7.6.1810, GNU
compilers 7.3, and CUDA Version 10.2.89 with driver ver. 440.33.01.

The second platform is the TYAN B8021G88V2HR-2T server at JIHT RAS.
It has the EPYC 7351P CPU and four NVidia GeForce GTX1070 GPUs con-
nected by PCIe 3.0 (Fig. 1b). Each GPU has 8 GB of GDDR5 memory.

4 Parallel Matrix-Matrix Multiplication Algorithm
for Multiple GPUs

The studied algorithm is an improved version of the algorithm presented pre-
viously [28]. The research is based on the general matrix-matrix multiplication
algorithm for the following matrix operation

C = αA ∗ B + βC.
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The main idea of the process is to calculate the tiles of the resulting matrix C
on each device with the reuse of possible data of the input matrix bands [28].
In the research, we observe a simpler case with 2 square matrices A and B,
where N ∗ N elements are in both. Each matrix is divided into some number
of equal-sized bands to share the computational load between different GPUs.
Then, from the pairs of the bands from A and B, we calculate the appropriate
tiles of the resulting matrix C.

The GEMM function from the cuBLAS library is used as the core of the
proposed algorithm. It normally works with column-oriented matrices, but is
also available for differently oriented matrices. In our case, if we perceive the
column orientation as a default configuration, we store the data of the matrix A
transposed. This simplifies the data transfer operation because we can just send
one long data line from the source memory.

The algorithm is GPU-oriented, thus, the CPU gives only instructions. The
source data are located in GPUs, and transfers are sent only between GPUs. For
computation in devices, 2 bands are allocated for the same matrix.

The classical SUMMA algorithm [19] is developed using MPI for distributed
memory systems. SUMMA does not use asynchronous data transfers, which
could help overlapping computations and communications. The algorithm pro-
posed here works with the “rows” of the matrix A and the “columns” of the
matrix B. However, GPUs perform computational operations reasonably quickly.
To supply data in time, high-speed communication links and data division into a
sufficiently large number of chunks are required. To manage this issue, we orga-
nize asynchronous communications and computations. Then, we do not supply
the original data of the matrix C, but we add βC due to the copy kernel of the
results received in the final stage.

5 Theoretical Optimal Tile Size

For a better performance of the algorithm, we regulate the tile size one by
one and find the best one. The performance time of the GEMM kernel can be
approximated [31] as

TGEMM = max (Tmem, Tmath, Tinstructions), (1)

where Tmem is the data management time in the frame of a device, Tmath is
the time spent on mathematical operations, and Tinstructions is the time during
which instructions are given by the CPU. In the basis of the algorithm, we
assume in advance that Tinstructions � Tmath since, otherwise, a multi-GPU
implementation would slow down the execution by waiting for instructions. To
satisfy this condition, the matrices involved in GEMM should not be too small.
To understand if Tmath > Tmem, we can find the arithmetic intensity [32] of
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GEMM operations, which should be greater than the defined value for the devices
involved, i.e., the math and memory bandwidth proportion. In the case of single
precision (32-bit), it can be found by the proportion

Intensity =
FLOPS

bytes
=

2MNK

4(MN + NK + MK)
> BWmath/BWmem = kBW ,

(2)
where M,N,K are the numbers of elements in the columns or rows of the matri-
ces A,B,C; BW is the processor math or memory bandwidth, appropriately. In
our case, Eq. (2) becomes

Intensity =
N2

i N

2(NiN + NiN + N2
i )

=
NiN

4N + 2Ni
> kBW . (3)

After simple arithmetic we get (N > 2kBW )

Ni > 4kBWN/(N − 2kBW ), Tmath > Tmem. (4)

For example, for single precision of the Nvidia V100 GPU (kBW = 16.6) if
N = 212, Ni > 66.9 needed to Tmath > Tmem, if N = 213, then Ni > 66.6, if
N = 214, then Ni > 66.5. Each time can be found by the equations

Tmath = FLOPS/BWmath, Tmem = bytes/BWmem, (5)

which for the algorithm transform into

Tmath = 2N2
i N/BWmath, Tmem = (8NNi + 4N2

i )/BWmem. (6)

On the other hand, we have to keep data supply from memory storing original
matrices simultaneously. The GPU device, where the original matrix is located,
sends bands to the other GPUs, so NumGPUs − 1 data transfer operations need
be sent. If we are not dealing with a small number of tiles, the reuse of data in
the model can approximate the time needed for one kernel launch (Tkernel) as
follows:

Tkernel = max(TGEMM , (NumGPUs − 1)Ttransfer). (7)

Otherwise, the transfer time (Ttransfer) can increase by up to 3 times (3 matrices
A, B, C). This effect is conspicuously demonstrated when we store all matrices in
one device [28], where the transfer time influences the performance of the whole
task and has decreased efficiency compared to the case with the spread store of
the matrices.

Furthermore, if we suppose that we have reached a fully parallel model, then
the full task performance time (Ttask) will be approximately

Ttask = 3Ttransfer + N/(NiNumGPUs)Tkernel. (8)

Particularly, the data transfer time has a linear form [33]

Ttransfer = bytes/BWtransfer + Tlatency. (9)
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We work with sufficiently large matrices such that the term with transfer band-
width between GPUs (BWtransfer) dominates [33]

bytes/BWtransfer � Tlatency. (10)

Accordingly, expression (9) together with condition (10) in single precision can
be converted into

Ttransfer = 4NiN/BWtransfer. (11)

Today, high-performance computing environments have exceptionally fast
math bandwidth (BWmath) or in-device memory bandwidth (BWmem) compar-
ing with data transfer (BWtransfer) from another device. It means that we will
slow down the execution of the task whenever we make GPUs wait for data sup-
ply. There are two possible situations, if Intensity > kBW , we determine from
Eqs. (1), (6), (7), (11)

Tkernel = TGEMM = Tmath, Ni > 2(NumGPUs −1)BWmath/BWtransfer, (12)

and if Intensity < kBW ,

Tkernel = Tmem, Ni > N ((NumGPUs − 1)BWmem/BWtransfer − 2) . (13)

Interesting remarks can be made here from conditions (12) and (13). If for some
reason we have BWtransfer � BWmath or mem, we will also have Tkernel =
TGEMM since Ni should be a natural number; but, probably, some reversed sit-
uation can be exposed for small Ni and will have a comparably fast BWtransfer.

We also minimize the performance time in Eq. (8) by regulating Ni. With
(6), (11), (12), (13), we determine for Intensity > kBW

Ttask(Ni) = (3N/BWtransfer + 2N2/(NumGPUsBWmath))Ni, (14)

otherwise

Ttask(Ni) = (3N/BWtransfer + 4N/(NumGPUsBWmem))Ni

+ 8N2/(NumGPUsBWmem). (15)

Expressions (14) and (15) show that the performance will be better for lower
Ni. However, we still have to satisfy three conditions (12), (13), and (4) at once.

6 Tile Size Tuning for Different Platforms

To come up with the required tile size using the materials presented in Sect. 5,
we have to pay attention to arithmetical intensity (4) and conditions (12) or (13).
Importantly, we see that if the algorithm is math limited (Intensity > kBW ),
then Ni is independent from N . In the work frame, we observe only matrices
with N ≥ 8192, and both N and Ni being some natural number power of 2.
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6.1 Expected tile Size for Experimental Environments

The first computing system is composed by Nvidia V100 GPUs connected by
NVLink 2.0. The V100 GPU single precision parameters are presented in Table 1.
To find Ni, we use the maximal expected BWmath or mem, but for the transfer
one, the rate is found by the bandwidth test. We have from (4) at least Ni > 66
to have a mathematical limited condition and from (12) Ni > 616 for 2 GPUs
and Ni > 1849 for 4 GPUs. Thus, the optimal sizes are Ni = 1024 for 2 GPUs
and Ni = 2048 for 4 GPUs.

The second system is Nvidia GeForce GTX 1070 GPUs connected by PCIe 3.0
(see Table 1). From the intensity condition we get Ni > 90, from (12) Ni > 1352
for 2 GPUs and Ni > 4058 for 4 GPUs. Thus, the optimal sizes are Ni = 2048
for 2 GPUs and Ni = 4096 for 4 GPUs.

Table 1. Test platform parameters and best predicted tile sizes

Hardware Parameters Nvidia V100 Nvidia GTX1070

BWmath (Gflops/sec) 14899 5783

BWmem (Gb/sec) 900 256

test BWtransfer (Gb/sec) 48.33 8.55

ideal BWtransfer (Gb/sec) 50 16

Algorithm Parameters Nvidia V100 Nvidia GTX1070

Ni for 2 GPUs 1024 2048

Ni for 4 GPUs 2048 4096

6.2 Experimental Results

In this section, we would like to present the performance time and tile size
dependence. For each test platform, we observed 2 cases of data store, when all
square matrices with N2 elements are located in the memory of one GPU, or the
matrices A, B, C are located in 3 GPUs, one in each. We increased the testing
data by 2, thus, N and Ni have the value being some power of 2. In addition, the
size ranges are N ≥ 8192 and Ni ≥ 512. The matrix size is chosen consciously
large to avoid the influence of minor parameters such as Tinstructions (Eq. (1)),
and the tile size to show the behavior when it goes over the appointed value
in Table 1. If we do not meet extra conditions to the tile size, the largest one
we can deal with is Ni = N/NumGPUs due to equal task division between the
implemented GPUs.

Each server we tested has 4 GPUs, which we could use when launching the
program. For each, we analyzed the cases with 2 or 4 GPUs. In addition, we
wanted to present some testing profiles to describe how GPU performance relates
to the tile size (Ni). While working with CUDA, we got profiles using nvprof and
visualized them by the Nvidia Visual Profiler. In Fig. 2, we can see the involved
processor in the column on the left side and the type of operation described, such
as instructions given on the CPU, data transfer, or kernel (GEMM) execution.
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Fig. 2. Profile parts of the multi-GPU GEMM operation on V100 with the proposed
algorithm performing on 4 GPUs. Number of elements (N = 65536) in a row (column)
of matrices and different tile sizes (Ni = 4096 (a), Ni = 2048 (b), Ni = 1024 (c)). The
matrices A, B, and C are stored in devices with id 0, 1, and 2.

Four V100 Connected by NVLink. The GPUs we worked with have 32
GB of in-device memory. For our experiments, the maximum matrices with
N = 32768 fit in one device memory together and with N = 65536 separately.
However, in the second case, we met the memory limit for allocating additional
band matrices involved in the computing process, thus, the maximum tile size
we could use was Ni = 4096. In Fig. 3, we can find the best performance with
Ni = 1024 for 2 GPUs and Ni = 2048 for 4 GPUs. These numbers match with
those defined in Sect. 6.1.
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Fig. 3. Graph of the multi-GPU GEMM operation on V100 with the proposed algo-
rithm performance speed on 2 and 4 GPUs by tile size (Ni) for a different number
of elements (N) in a row (column) of matrices. The matrices A, B, and C are stored
in device 0 (a) or in devices 0, 1, 2 (b), respectively. The dashed lines show the total
single precision peak performance of 2 and 4 GPUs, respectively.

Figure 2 for N = 65536 demonstrates the execution of 4 Volta 100 GPUs
for different tile sizes (Ni). When using the appointed size Ni (see Fig. 2b), we
achieve the most frequent data transfer (for example, comparing with Fig. 2a),
not taking longer than the kernel time (see Fig. 2c). This matches with the
propositions given in Sect. 5. Therefore, the benchmark results verify the model.

Four GTX1070 Connected by PCIe 3.0. This testing platform has 8 GB
of local memory in each GPU. We could perform benchmarks up to N = 16384
for a single device located case and N = 32768 and up to Ni = 4096 for a
distributed storage case. The results are presented in Fig. 4.

The best performance with 2 GPUs is achieved with Ni = 2048 as proposed
(Fig. 4a). For 4 GPUs, we have a lack of data due to the memory limit, however,
the performance keeps growing to Ni = 4096, so we can expect it to be the
best. Hence, the found tile size according to the arithmetical model matches for
2 GPUs, and, however, the tile size for 4 GPUs is shown to be the best only on
one point due to the memory limit; the behavior of the graphs matches with the
propositions given beforehand, that is why we can assume that the results fully
comply with the mathematical algorithm.
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Fig. 4. Graph of the multi-GPU GEMM operation on GeForce GTX1070 with the
proposed algorithm performance speed on 2 (a) and 4 GPUs (b,c) by tile size (Ni) for
a different number of elements (N) in a row (column) of matrices. The matrices A, B,
and C are stored in device 0 (a,b) or in devices 0, 1, 2 (c), respectively. The dashed
lines show the total single precision peak performance of 2 and 4 GPUs, respectively.

7 Discussion

The performance of the proposed multi-GPU general matrix multiplication algo-
rithm is dependent on the size of tile matrices. We determined tile size values
for definite device and communication link properties, as well as the number
of GPUs involved, to achieve the best performance in the tests. Then we per-
formed experiments with large matrices to reach the performance limited by the
computing ability of the GPU.

In the most general case, the computation of GEMM functions on a GPU
can be limited by computational performance or memory bandwidth, depending
on the matrix size. However, in our work, we observe only a computationally
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limited case. There are secondary, but still important conditions that affect the
performance. The first is the initialization latency of kernels on the GPU called
by the CPU, and the consumed time for it should be much less than the time of
the actual workload. The second is the data transfer time, which should be less
than the computing time to keep the continuous operation of multiple devices.

We propose a mathematical model to define the optimal tile size based on
known hardware parameters. The model is based on some assumptions about
the system. In particular, the system should include similar GPUs connected by
links with the same and fairly stable throughput values. In practice, determining
the real properties of communication networks may be a non-trivial task, in
particular, the behavior of these links under a certain load may require additional
tests and profiling.

The proposed algorithm with a high degree of probability will not be optimal
for exotic and specific cases (see e.g. [34]). In this paper, more typical and com-
mon cases are considered. Further development of the algorithm may include
increased flexibility and versatility to work effectively on a wide range of config-
urations.

8 Conclusion

An analytical model that takes into account the hardware parameters of the GPU
server (data transfer bandwidth and GPU performance) and predicts the optimal
tile size for the multi-GPU GEMM algorithm is developed. The benchmarks
on two different GPU servers (one with V100 GPUs and NVlink and another
with GTX1070 GPUs and PCIe links) confirm the applicability of the analytical
model. The profiling of the algorithm execution on the GPU server with NVlink
also verifies the model .
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